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Abstract

In this note, we uncover three connections between the metric dis-

tortion problem and voting methods and axioms from the social choice

literature.

1 Introduction

The distortion of voting rules was introduced by Procaccia and Rosenschein
[2006] as a way to implicitly measure the utilitarian performance of a voting
rule. The distortion of a voting rule given some ordinal preference profile, is the
worst-case approximation factor to the social welfare this voting rule can achieve,
among all utility profiles consistent with the ordinal preferences. Without any
additional assumptions on these utility profiles, no voting rule can achieve any
constant factor guarantees. This motivated Anshelevich et al. [2018] to study
the special case of metric utility profiles, i.e., utility profiles for which a metric
space exists, in which the voters and candidates lie, such that the utility of a
voter for a candidate is precisely the distance between them. For such utility
profiles, a lower bound of 3 on the distortion of any rule was quickly established,
while it was also shown that the Copeland rule (in fact, any rule selecting
from the uncovered set) achieves a distortion of 5. This upper bound of 5
was subsequently lowered by Kempe [2020] and Munagala and Wang [2019],
until finally Gkatzelis et al. [2020] achieved an upper bound of 3 through a
rather “complex” rule dubbed Plurality Matching. This rule was subsequently
simplified by Kızılkaya and Kempe [2022] to the so-called Plurality Veto rule.

In this paper, we show that the Plurality Matching and Plurality Veto rules
are related closely to three different settings in social choice: (i) The Pro-
portional Veto Core by Moulin [1981], (ii) the concept of Proportionality for
Solid Coalitions from multiwinner voting (see, for instance, Aziz and Lee [2020]
or Brill and Peters [2023]), and (iii) the Matching under Preferences setting
[Bogomolnaia and Moulin, 2001]. In fact, we give an equivalent formulation of
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the Plurality Matching concept in all three settings. Using this equivalence,
the Plurality Veto rule, the Vote-by-Veto rule [Moulin, 1981], and the Serial
Dictatorship rule [Abdulkadiroğlu and Sönmez, 1998] are instantiations of the
same rule. Further, Phragmén’s Ordered Rule [Janson, 2016], Probabilistic
Serial [Bogomolnaia and Moulin, 2001], and the “Veto by consumption” rule
[Ianovski and Kondratev, 2021] can also be treated as instantiations of the same
rule and thus lead to a new rule with an optimal metric distortion of 3.

2 Notation

Throughout the paper, we assume that we are given a set N = [n] of voters and
a set C = {c1, . . . , cm} of candidates. Further, each voter i ∈ N has a strict and
complete preference list ≻i⊆ C × C with ≻= (≻i)i∈N forming the preference
profile. Together, (N,C,≻) form our election instance. For a given profile ≻,
we let ≻R be the preference profile such that c ≻R

i c′ if and only if c′ ≻i c, i.e.,
the reversed preference profile. Further, we write ci � cj if and only if ci ≻ cj
or ci = cj . For a set N ′ ⊆ N of voters and sets C′, C′′ ⊆ C of candidates we
write that C′ ≻N ′ C′′ if and only if c′ ≻i c

′′ for all i ∈ N ′, c′ ∈ C′, and c′′ ∈ C′′.
Additionally, we need the notion of cloned candidates. For a given frequency

function f : C → N0, the instance (N,Cf ,≻f ) is the instance in which every
candidate c is replaced by f(c) clones in every preference list. The ranking
between the clones is arbitrary but fixed across voters, and candidates with
f(c) = 0 are deleted. We denote by plu(c) the plurality score of candidate c,
by boti(C

′) the worst ranked candidate c ∈ C′ by voter i. Hence, the instance
(N,Cplu,≻plu) denotes the instance in which every candidate is cloned as many
times as they appear first in any preference profile. We not that for this special
instance n = m holds.

For any c ∈ C and N ′ ⊆ N we define

Dc(N
′) := {c′ ∈ C : c �i c

′ for some i ∈ N ′}

as the set of all candidates which are not ranked better than c by at least one
voter in N ′. Note that, by definition, c ∈ Dc(N

′) for all c ∈ C and non-empty
N ′ ⊆ N .

We say that a utility function u : C → R
+ is consistent with a preference

list ≻ if ci ≻ cj implies u(ci) ≤ u(cj), i.e., the goal is to select the candidate
with the lowest social cost. A utility profile U = (ui)i∈N is a collection of utility
functions such that ui is consistent with ≻i. For a given utility profile U and
candidate c the social welfare of c is sw(c, U) :=

∑
i∈N ui(c).

We call a utility profile metric if there exists a metric space (N ∪C, d) with
ui(c) = d(i, c), i.e., if there is a function d : (N ∪ C)2 → R

+ such that for any
i, j, k ∈ N∪C it holds that (i) d(i, j) = 0 if and only if i = j, (ii) d(i, j) = d(j, i),
and (iii) d(i, k) ≤ d(i, j) + d(j, k).

Given a preference profile ≻, let U(≻) be the set of all metric utility profiles
consistent with the preference profile. Themetric distortion of a given candidate
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is now the worst-case social welfare ratio of this candidate compared to the social
welfare winner, over all consistent metric utility profiles, that is

dist(c,≻) = sup
U∈U(≻)

sw(c, U)

minc′∈C sw(c′, U)
.

The metric distortion of a voting rule is the worst-case distortion of any candi-
date the rule selects over all possible preference profiles.

3 Plurality Matching and Domination Graphs

To tackle the problem of designing a voting rule achieving a metric distortion of
exactly 3, Gkatzelis, Halpern, and Shah [2020] introduced the Plurality Match-
ing rule, based on the so-called domination graph.

Definition 1. Given a candidate c, the domination graph G(c) = (V ∪ C,Ec)
is the bipartite graph consisting of the set of voters on the one side, the set of
candidates on the other side, with an edge between voter i and candidate c′ if
and only if c �i c

′.

A fractional perfect matching is a functionM : Ec → R≥0 with
∑

e∈δ(i) M(e) =

1 for all i ∈ V and
∑

e∈δ(c) M(e) = n
m

for all c ∈ C. As one of their main contri-

butions, Gkatzelis et al. [2020] were able to show that there is always a candidate
c whose domination graph has a fractional perfect matching.

Theorem 1 ([Gkatzelis et al., 2020]). For any election, there is a candidate c
such that G(c) admits a fractional perfect matching. Such a candidate can be
found in polynomial time.

Whether G(c) admits a fractional perfect matching can be verified in poly-
nomial time using a generalization of Hall’s Theorem.

Lemma 2 ([Gkatzelis et al., 2020]). Given a candidate c, the domination graph
G(c) admits a fractional perfect matching if and only if for any N ′ ⊆ N , it holds

that |Dc(N
′)| ≥ m|N ′|

n
.

To relate this to the distortion problem, Gkatzelis et al. [2020] further showed
that for the special case in which candidates are cloned according to their plu-
rality score, any candidate admitting such a fractional perfect matching has
metric distortion of at most 3.

Theorem 3 ([Gkatzelis et al., 2020]). Given an instance (N,C,≻), consider
the instance (N,Cplu,≻plu) in which every candidate c appears as many times
as they are ranked first by a voter. Any candidate c whose domination graph
G(c) admits a fractional perfect matching in the instance (N,Cplu,≻plu), has
metric distortion of at most 3 in (N,C,≻).
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ALGORITHM 1: Plurality Veto Rule

1 Create instance (N,Cplu,≻plu);
2 for i ∈ [n− 1] do
3 Cplu ← Cplu \ boti(Cplu)
4 end

5 return last remaining candidate in Cplu;

We call such a candidate a plurality matching winner. As such a candidate
always exists according to Theorem 1, there is also always a candidate with
metric distortion of at most 3. However, while this candidate always exists,
selecting it via simply iterating over all candidates and checking whether their
domination graph admits such a matching, is somewhat unsatisfying and un-
natural when comparing it to other voting rules, especially as it is not obvious
(without the involved proof of Gkatzelis et al. [2020]), that such a candidate
exists.

This motivated Kızılkaya and Kempe [2022] to introduce a simple rule which
can always select a plurality matching winner: The plurality veto rule.

We state the rule in Algorithm 1 for the special case of n = m in the instance
(N,Cplu,≻plu). For the general version, called fractional veto rule, which can
also be used to show Theorem 1, see the paper by Kızılkaya and Kempe [2022].

4 The Proportional Veto Core

Unrelated to the previous distortion considerations, Moulin [1981, 1982] intro-
duced the proportional veto core, which we present here in the formulation of
Ianovski and Kondratev [2021]. The goal of the proportional veto core is to give
groups of voters the right to veto candidates they do not like. The power to
veto should be distributed in a proportional fashion: an α-fraction of the voters
should be able to veto an α-fraction of the candidates. To formalize this, for any

group of votersN ′ ⊆ N , we say that the veto power of N ′ is v(N ′) = ⌈m|N ′|
n
⌉−1.

A candidate c is now considered to be vetoed, if there is some group N ′ of voters
which rank at least m− v(N ′) candidates all better than c, that is, they could
veto v(N ′) candidates together with c.

Definition 2. A candidate c is vetoed if there is some set N ′ ⊆ N of voters
and set C′ ⊆ C of candidates with c /∈ C′ such that |C′| ≥ m − v(N ′) and
C′ ≻N ′ C \C′. The proportional veto core consists of all alternatives which are
not vetoed.

The proportional veto core is non-empty [Moulin, 1981, 1982] and can be
computed using the voting by veto tokens rule introduced by Moulin [1981] and
further analyzed by Ianovski and Kondratev [2021]. This rule works exactly
the same as the fractional veto rule of Kızılkaya and Kempe [2022] and can
be computed in polynomial time [Ianovski and Kondratev, 2021]. Additionally,
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both Moulin [1983] and Ianovski and Kondratev [2021, Proposition 21] showed
that a candidate is in the proportional veto core if and only if it can be computed
by the voting by veto tokens rule.

Further, Ianovski and Kondratev [2021] introduced the “Vote by consump-
tion” rule, which also selects from the proportional veto core. Intuitively, their
rule works as follows: all voters simultaneously and with the same speed give
score to their lowest ranked candidate. Once a candidate reaches a score of 1 this
candidate is eliminated and the voters move on to their next worst candidate.
The last candidate remaining wins. As pointed out by Ianovski and Kondratev
[2021], this rule is anonymous and can be computed in polynomial time as well.

5 Proportionality for Solid Coalitions

Next, we turn to another equivalent formulation of the proportional veto core.
For this, we use the well-known notion of proportionality for solid coalitions
(PSC) [Dummett, 1984]. It was introduced in the context of proportional com-
mittee selection with ranked preferences, as a way to axiomatically measure
whether a committee is proportional. In the committee selection problem, in-
stead of selecting a single winner, a set of k winners is selected. Sets W ⊆ C
are referred to as committees.

Definition 3. A committee W of size k satisfies weak Droop proportionality
for solid coalitions (weak-PSC) if there is no group N ′ of voters and set C′ of

candidates with |N ′| > |C′|n
k+1 such that C′ \W 6= ∅ and C′ ≻N ′ C \ C′.

In a nutshell, if a group of voters agrees on a prefix in their rankings and
could afford this prefix, the candidates in the prefix need to be included in the
committee. Rules satisfying this notion include Phragmén’s sequential rule for
ordinal ballots [Janson, 2016], the Droop variants of the expanding approvals
rule [Aziz and Lee, 2020], and the well-studied Single Transferable Vote (STV)
[Tideman, 1995].

Interestingly enough, Phragmén’s sequential rule for ordinal ballots behaves
equivalently to veto-by-consumption run on the reversed preferences profile: the
first k candidates discarded by veto-by-consumption on profile ≻R, are exactly
the k candidates elected by Phragmén’s sequential rule.

This is no coincidence, however, as we show in the next section.

6 Equivalence Result

Here we show our main result: For a candidate c it is equivalent that c is selected
by the plurality matching rule, is in the proportional veto core, and that the
committee C \ {c} of size m − 1 satisfies weak-PSC in the reversed preference
profile.

Theorem 4. Given an election instance (N,C,≻) and candidate c ∈ C, the
following three statements are equivalent.
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(i) The domination graph G(c) of candidate c admits a fractional perfect
matching.

(ii) Candidate c is in the proportional veto core.

(iii) The committee C \ {c} satisfies weak-PSC in the instance (N,C,≻R).

Proof. (i)⇒ (ii): First, assume that c is not in the proportional veto core. Then
there is a group N ′ ⊆ N of voters and set C′ ⊆ C of candidates with c /∈ C′,

|C′| ≥ m − ⌈m|N ′|
n
⌉ + 1, and C′ ≻N ′ {c}. Thus, we know that |Dc(N

′)| ≤

⌈m|N ′|
n
⌉ − 1 < m|N ′|

n
and by Lemma 2 the domination graph G(c) does not

admit a perfect fractional matching.
(ii) ⇒ (iii): Next, assume that the committee C \ {c} does not satisfy weak-

PSC in the instance (N,C,≻R). Thus, there is a set N ′ of voters and a set C′

of candidates with c ∈ C′ such that C′ ≻N ′ C \C′ and |C′| < |N ′|(k+1)
n

= |N ′|m
n

.

Since, |C′| is integral, we also get that |C \ C′| = m − |C′| ≥ m − ⌈m|N ′|
n
⌉ + 1

and hence, the set C \ C′ together with N ′ blocks c.
(iii) ⇒ (i): Finally, we assume that the domination graph of c does not

admit a fractional perfect matching. Then by Lemma 2 there is some group N ′

of voters with |Dc(N
′)| < m|N ′|

n
, and therefore the candidate set {c′ ∈ C : c ≻N ′

c′} = {c′ ∈ C : c′ ≻R
N ′ c} together with N ′ witnesses a weak-PSC violation.

Thus, all rules for either selecting from the proportional veto core or selecting
committees satisfying weak-PSC can also be turned into rules achieving a metric
distortion of 3 by applying them to the instance (N,Cplu,≻plu). These include
the anonymous veto-by-consumption rule (or Phragmén’s sequential rule for
ordinal ballots), but also committee selection rules such as STV or EAR, which
satisfy weak-PSC [Aziz and Lee, 2020].

7 Matching under Preferences

Finally, we turn to our fourth setting: Matching under Preferences. More specifi-
cally, we investigate the random assignment problem of Bogomolnaia and Moulin
[2001]. Like Ianovski and Kondratev [2021], we observe that the Probabilistic
Serial rule of Bogomolnaia and Moulin [2001] can be seen as running Phragmén’s
sequential rule for k = m (or the veto-by-consumption rule for the reversed pref-
erence profile) and interpreting the “eaten part” as the probabilities.

To stay consistent with the notation, we also assume that we are given a set
N of voters, C of candidates and a preference profile ≻. Further, we assume
that we are given a restriction k on the number of candidates matched. Now, a
random assignment µ : N×C → R≥0 is a function assigning each voter-candidate
pair a probability to be matched. That is,

∑
i∈N µ(i, c) ≤ 1 for each c ∈ C.

Further, to implement the constraint of at most k candidates being matched,
we assume that

∑
c∈C µ(i, c) = k

n
for each i ∈ N , that is, each voter is matched

with the same probability. We note that this is the same as a price system in
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the committee selection literature, [Peters and Skowron, 2020, Brill and Peters,
2023].

Such a random assignment can also be seen as a lottery over matchings.
Given a set of matchings M1, . . . ,Mℓ and probabilities p1, . . . , pℓ ∈ (0, 1] with∑

i∈[ℓ] pi = 1, we say that this set implements µ if µ(i, c) =
∑

j∈[ℓ] : M(i)=c pj .
The support of µ are now all matchings M is of size k that are in some set
implementing µ.

Finally, we note that the two popular assignment mechanisms, Random Pri-
ority and Probabilistic Serial, can easily be adapted to this setting of matching
at most k items: Random Priority by ending the process after k items have
been picked, and Probabilistic Serial by only running it for a time of k

n
.

Random Priority and Probabilistic Serial are both known to satisfy ex-post
efficiency, i.e., the actual allocations they randomize over are Pareto efficient.
We formalize this as follows.

Definition 4. A matching M of size k is Pareto efficient, if there is no matching
M ′ of size k such that M ′(i) �i M(i) for every i ∈ N and M ′(i) ≻i M(i) for
some i ∈ N .

Further, we say that a random assignment is ex-post efficient if every match-
ing in its support is Pareto efficient.

We can show that Pareto optimality gives us another equivalent formulation
of the proportional veto core, at least in the case n = m. Thus, any ex-post
Pareto optimal mechanism can also be used to select from the proportional veto
core in this special case.

Theorem 5. Given a voting instance (N,C,≻) with |N | = |C|, a candidate c
is in the proportional veto core if and only if in the instance (N,C,≻R) there is
a Pareto optimal matching of size m− 1 matching every candidate in C \ {c}.

Proof. First, if c is not in the proportional veto core, there is a group N ′ of

voters and C′ of candidates with |C′| ≥ m − ⌈m|N ′|
n
⌉ + 1 = n − |N ′| + 1 and

C′ ≻N ′ {c} and therefore {c} ≻R C′. Since the members of N ′ are matched
to at least |N ′| − 1 items, there must be one voter in N ′ matched to someone
worse than c. Hence, this matching was not Pareto optimal, since this voter
could have been matched to c instead.

On the other hand, assume that there is no Pareto optimal matching of
size m − 1 matching every candidate in C \ {c}. It is easy to see that this is
equivalent to there not being any matching of size m − 1 which only matches
voters to candidates they prefer to c (for a proof see [Hosseini et al., 2021,
Theorem 2]). Thus, by Hall’s Theorem, there must be a set N ′ ⊆ N of voters
with C′ := {c′ ∈ C : c′ ≻i c for some i ∈ N ′} such that |C′| ≤ |N ′|−2. However,
then C′ and N ′ witness a violation of c being in the proportional veto core.

While this applies to the special case relevant for distortion (in which n = m)
it does not do so in general. For example, consider an instance with 4 voters
and 3 candidates. Two of the voters have the ranking c1 ≻ c2 ≻ c3 while two
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other ones have the ranking c3 ≻ c2 ≻ c1. Here, two voters have a veto power
of 3 − ⌈ 3·24 ⌉+ 1 = 2. Thus, neither c1 nor c3 is in the proportional veto core of
this instance. However, the matching which matches the first two voters to c3
and c2 is Pareto optimal in the instance ≻R. Hence, we leave a generalization
beyond the case of n = m for future work.

Further, we note that by the equivalence between Pareto optimality and the
serial dictatorship mechanism [Abdulkadiroğlu and Sönmez, 1998], the existence
of a Pareto optimal matching of size m−1 matching every candidate in C\{c} is
equivalent to there being a permutation σ(1), . . . , σ(n) of the voters, such that
the last voter σ(n) picks candidate c in the serial dictatorship mechanism, thus
also drawing the connection to matchings of size m.

8 Conclusion and Outlook

We have shown that the domination graph concept of Gkatzelis et al. [2020] and
the plurality veto rule of Kızılkaya and Kempe [2022] are inherently related to
three concepts from social choice: The proportional veto core, proportionality
for solid coalitions, and Pareto optimal matchings. This gives rise to several
more possible algorithms achieving an optimal metric distortion of 3. Most
prominently, Phragmén’s ordinal method (or, equivalently, veto-by-consumption
or probabilistic serial) can be turned into such a rule, by cloning each candidate
according to their plurality score and then picking the last candidate elected by
Phragmén’s ordinal method for k = n (or, equivalently, the only remaining one
for k = n− 1).

So far, all methods known to achieve a metric distortion of 3 rely on this
cloning step. Thus, it would be an interesting direction for future research to
explore whether there is a voting rule with distortion 3 which works without
this step.
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